Religion, Cognition, and Political Behavior
An Interdisciplinary Exploration of Faith-Based Polarization Mechanisms
DOI:
https://doi.org/10.59001/pjrs.v3i2.181Keywords:
political polarization, cognitive mechanisms, reinforcement learning, political decision-making, information influenceAbstract
Political polarization is a complex phenomenon with significant implications for democratic processes worldwide. This study investigates the cognitive mechanisms underlying political reinforcement learning and examines how environmental information influences political decision-making, resulting in diverse political behaviors and beliefs. The methodology employed encompasses descriptive analysis, systematic literature review, and content analysis. Data were sourced from various democratic countries to ensure a comprehensive and diverse perspective. Key findings indicate that both traditional and social media significantly shape political opinions, while cognitive biases and political motivations can lead to divergent interpretations of identical facts, culminating in polarized beliefs. Interventions that enhance cognitive flexibility and metacognitive insight, as well as those promoting civil discourse and reducing intergroup anxiety, were found to be effective in mitigating political polarization. This research provides valuable insights into the cognitive and social dynamics underlying political polarization and proposes strategies to reduce polarization and strengthen democratic institutions. Future research should prioritize the empirical validation of these models and the testing of interventions across diverse cultural and political contexts.
References
Amoore, L. (2022). Machine Learning Political Orders. Review of International Studies, 49(1), 20–36. https://doi.org/10.1017/s0260210522000031
Amrullah, A., Umar, U., & Suharli, L. (2023). Pengaruh Strategi Komunikasi Politik Terhadap Partisipasi Politik Masyarakat Dengan Perilaku Pemilih Sebagai Variabel Moderasi Dalam Pemilihan Gubernur Nusa Tenggara Barat Tahun 2018 Di Kota Sumbawa. Jiip - Jurnal Ilmiah Ilmu Pendidikan, 6(5), 2922–2930. https://doi.org/10.54371/jiip.v6i5.1984
Andrews, S. J., Das, D., Anstey, K. J., & Easteal, S. (2016). Association of AKAP6 and MIR2113 With Cognitive Performance in a Population Based Sample of Older Adults. https://doi.org/10.1101/070409
Asmuni, M. B., & Kosandi, M. (2020). Faktor Politik Uang Dalam Perilaku Memilih Masyarakat Pada Pilkada Kabupaten Temanggung Tahun 2018. Indonesian Governance Journal Kajian Politik-Pemerintahan, 3(2), 71–85. https://doi.org/10.24905/igj.v3i2.1597
Baar, J. v., & FeldmanHall, O. (2022). The Polarized Mind in Context: Interdisciplinary Approaches to the Psychology of Political Polarization. American Psychologist, 77(3), 394–408. https://doi.org/10.1037/amp0000814
Balinhas, D. (2022). Bringing Critical Social Psychology to the Study of Political Polarization. Social and Personality Psychology Compass, 17(1). https://doi.org/10.1111/spc3.12721
Bijma, H. H., Wildschut, H. I. J., Heide, A. v. d., Passchier, J., Wladimiroff, J. W., & Maas, P. J. v. d. (2005). Parental Decision-Making After Ultrasound Diagnosis of a Serious Foetal Abnormality. Fetal Diagnosis and Therapy, 20(5), 321–327. https://doi.org/10.1159/000086806
Bougher, L. D. (2012). The Case for Metaphor in Political Reasoning and Cognition. Political Psychology, 33(1), 145–163. https://doi.org/10.1111/j.1467-9221.2011.00865.x
Brand, M., & Markowitsch, H. J. (2009). Aging and Decision-Making: A Neurocognitive Perspective. Gerontology, 56(3), 319–324. https://doi.org/10.1159/000248829
Caparos, S., Fortier-St-Pierre, S., Gosselin, J., Blanchette, I., & Brisson, B. (2015). The Tree to the Left, the Forest to the Right: Political Attitude and Perceptual Bias. Cognition, 134, 155–164. https://doi.org/10.1016/j.cognition.2014.10.006
Chen, G., Zheng, W., Shi, G., Xiong, D., Du, J., & Bai, Y. (2015). Key Technology of Pilot’s Cognitive Decision-Making Capacity Evaluation Based on Distributed Computing. Matec Web of Conferences, 22, 01015. https://doi.org/10.1051/matecconf/20152201015
Cole, J. C., Gillis, A., Linden, S. v. d., Cohen, M. S., & Vandenbergh, M. P. (2023). Social Psychological Perspectives on Political Polarization: Insights and Implications for Climate Change. https://doi.org/10.31234/osf.io/xz6wk
Das, T., & Teng, B. (1999). Cognitive Biases and Strategic Decision Processes: An Integrative Perspective. Journal of Management Studies, 36(6), 757–778. https://doi.org/10.1111/1467-6486.00157
Didi, D. (2019). Model Mediasi Dan Moderasi Dalam Hubungan Antara Perilaku Politik Pimpinan, Kompetensi Auditor, Dan Kinerja Auditor. Ekuitas (Jurnal Ekonomi Dan Keuangan), 3(1), 48–71. https://doi.org/10.24034/j25485024.y2019.v3.i1.4064
Driessens, K., & Džeroski, S. (2004). Integrating Guidance Into Relational Reinforcement Learning. Machine Learning, 57(3), 271–304. https://doi.org/10.1023/b:mach.0000039779.47329.3a
Duong, F., Small, C., Hawkins, S., & Xu, C. (2023). Outgroup Testimonials and Ingroup Validation Strengthen the Effects of Perception Gap Interventions on Affective Polarization: Evidence From a Large-Scale Experiment. https://doi.org/10.31234/osf.io/atguq
Freeden, M., Sargent, L. T., & Stears, M. (2013). The Oxford Handbook of Political Ideologies. https://doi.org/10.1093/oxfordhb/9780199585977.001.0001
Gershman, S. J. (2019). How to never be wrong. Psychonomic Bulletin & Review, 26(1), 13–28. https://doi.org/10.3758/s13423-018-1488-8
Grondman, I., Buşoniu, L., Lopes, G., & Babuška, R. (2012). A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients. Ieee Transactions on Systems Man and Cybernetics Part C (Applications and Reviews), 42(6), 1291–1307. https://doi.org/10.1109/tsmcc.2012.2218595
Gu, Y., & Wang, Z. (2021). Income Inequality and Global Political Polarization: The Economic Origin of Political Polarization in the World. Journal of Chinese Political Science, 27(2), 375–398. https://doi.org/10.1007/s11366-021-09772-1
Guan, T., Liu, T., & Chen, X. (2023). Investigating the Potential of Civil Disagreement to Decrease Issue Polarization in China. Policy & Internet, 15(3), 288–305. https://doi.org/10.1002/poi3.338
Gupta, K. C., & Najjaran, H. (2021). Curriculum-Based Deep Reinforcement Learning for Adaptive Robotics: A Mini-Review. International Journal of Robotic Engineering, 6(1). https://doi.org/10.35840/2631-5106/4131
Hackett, J. D., Gaffney, A. M., & Data, L. (2018). Intergroup Anxiety and Political Loss: The Buffering Effects of Believing in the Open Marketplace of Ideas and Openness to Diverse Political Discussions. Journal of Applied Social Psychology, 48(3), 150–164. https://doi.org/10.1111/jasp.12500
Han, K. J. (2022). Education Level and Affective Polarization: The Mediation Effects of Psychological Engagement in Politics and Authoritarian Attitudes. Social Science Quarterly, 103(7), 1633–1646. https://doi.org/10.1111/ssqu.13228
Hernandez-Garcia, J. F. (2019). Understanding Multi-Step Deep Reinforcement Learning: A Systematic Study of the DQN Target. https://doi.org/10.48550/arxiv.1901.07510
Heywood, A. (1992). Political Ideologies: An Introduction. Choice Reviews Online, 30(03), 30-1758-30–1758. https://doi.org/10.5860/choice.30-1758
Hibbing, J. R., Smith, K. B., & Alford, J. R. (2014). Differences in Negativity Bias Underlie Variations in Political Ideology. Behavioral and Brain Sciences, 37(3), 297–307. https://doi.org/10.1017/s0140525x13001192
Hill, S. J. (2017). Learning Together Slowly: Bayesian Learning About Political Facts. The Journal of Politics, 79(4), 1403–1418. https://doi.org/10.1086/692739
Hong, I., Rutherford, A., & Cebrian, M. (2021). Social Mobilization and Polarization Can Create Volatility in COVID-19 Pandemic Control. Applied Network Science, 6(1). https://doi.org/10.1007/s41109-021-00356-9
Huys, Q. J. M., Guitart-Masip, M., Dolan, R. J., & Dayan, P. (2015). Decision-Theoretic Psychiatry. Clinical Psychological Science, 3(3), 400–421. https://doi.org/10.1177/2167702614562040
Indina, T. A., & Morosanova, V. I. (2009). Personality and Self-Regulation as Determinants of Rational Decision Making in a Political Voting Situation. Psychology in Russia State of Art, 5(1), 57. https://doi.org/10.11621/pir.2009.0004
Innovative Methods for Ideological and Political Education of College Students. (2018). Educational Sciences Theory & Practice. https://doi.org/10.12738/estp.2018.5.106
Jacobsen, J., & Fuchs, L. M. (2020). Can We Compare Conceptions of Democracy in Cross-Linguistic and Cross-National Research? Evidence From a Random Sample of Refugees in Germany. Social Indicators Research, 151(2), 669–690. https://doi.org/10.1007/s11205-020-02397-6
Jeon, Y. (2024). HearHere: Mitigating Echo Chambers in News Consumption Through an AI-based Web System. Proceedings of the Acm on Human-Computer Interaction, 8(CSCW1), 1–34. https://doi.org/10.1145/3637340
Jost, J. T., Federico, C. M., & Napier, J. L. (2009). Political Ideology: Its Structure, Functions, and Elective Affinities. Annual Review of Psychology, 60(1), 307–337. https://doi.org/10.1146/annurev.psych.60.110707.163600
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research, 4, 237–285. https://doi.org/10.1613/jair.301
Krastev, S., McGuire, J. T., McNeney, D., Kable, J. W., Stolle, D., Gidengil, E., & Fellows, L. K. (2016). Do Political and Economic Choices Rely on Common Neural Substrates? A Systematic Review of the Emerging Neuropolitics Literature. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00264
Kriswantoro, T., Ayuning, E., Reswara, A., & Zidan, A. (2022). Political Polarization Dan Political Disinformation. Jurnal Polgov, 4(2), 50–110. https://doi.org/10.22146/polgov.v4i2.3554
Kubin, E., & Sikorski, C. v. (2021). The Role of (Social) Media in Political Polarization: A Systematic Review. Annals of the International Communication Association, 45(3), 188–206. https://doi.org/10.1080/23808985.2021.1976070
Leimgruber, P. (2011). Values and Votes: The Indirect Effect of Personal Values on Voting Behavior. Swiss Political Science Review, 17(2), 107–127. https://doi.org/10.1111/j.1662-6370.2011.02009.x
Levine, S. (2018). Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review. https://doi.org/10.48550/arxiv.1805.00909
Maia, T. V. (2009). Reinforcement Learning, Conditioning, and the Brain: Successes and Challenges. Cognitive Affective & Behavioral Neuroscience, 9(4), 343–364. https://doi.org/10.3758/cabn.9.4.343
McCarrey, A. C., Henry, J. D., & Luszcz, M. A. (2010). Potential Mechanisms Contributing to Decision-Making Difficulties in Late Adulthood. Gerontology, 56(4), 430–434. https://doi.org/10.1159/000275060
Miler, K. C. (2009). The Limitations of Heuristics for Political Elites. Political Psychology, 30(6), 863–894. https://doi.org/10.1111/j.1467-9221.2009.00731.x
Moore, A. (2014). Democratic Reason: Politics, Collective Intelligence and the Rule of the Many. Contemporary Political Theory, 13(2), e12–e15. https://doi.org/10.1057/cpt.2013.26
Moore, A., Hong, S., & Cram, L. (2021). Trust in Information, Political Identity and the Brain: An Interdisciplinary fMRI Study. Philosophical Transactions of the Royal Society B Biological Sciences, 376(1822), 20200140. https://doi.org/10.1098/rstb.2020.0140
Mortensen, P. B., & Serritzlew, S. (2006). Newspapers and Budgeting: The Effects of Media Coverage on Local Expenditure Decisions. Scandinavian Political Studies, 29(3), 236–260. https://doi.org/10.1111/j.1467-9477.2006.00151.x
Noël, X., Jaafari, N., Bechara, A., & Redlawsk, D. P. (2019). A Somatic Marker Perspective of Political Decision Making. https://doi.org/10.1093/acrefore/9780190228637.013.945
Öllinger, M., Meißner, K., Müller, A., & Seidel, C. C. (2017). Expectation Violation in Political Decision Making: A Psychological Case Study. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01761
Olsson, S., & Gustafsson, C. (2021). Estimated Effects of Web-Based Course From Adult Vocational Students’ Perspective—A PFA Course in Scandinavian Intellectual Disability Practice. Disabilities, 1(2), 98–115. https://doi.org/10.3390/disabilities1020009
Pelizzo, R. (2023). Traditional Beliefs and Electoral Behavior. World Affairs, 186(4), 925–950. https://doi.org/10.1177/00438200231203017
Pennycook, G., McPhetres, J., Bagó, B., & Rand, D. G. (2020). Beliefs About COVID-19 in Canada, the U.K., and the U.S.A.: A Novel Test of Political Polarization and Motivated Reasoning. https://doi.org/10.31234/osf.io/zhjkp
Petersen, M. B., & Aarøe, L. (2013). Politics in the Mind’s Eye: Imagination as a Link Between Social and Political Cognition. American Political Science Review, 107(2), 275–293. https://doi.org/10.1017/s0003055413000026
Pfledderer, C. D., Klinggraeff, L. v., Burkart, S., Wolfenden, L., Ioannidis, J. P. A., & Beets, M. W. (2023). Feasibility Indicators in Obesity-Related Behavioral Intervention Preliminary Studies: A Historical Scoping Review. Pilot and Feasibility Studies, 9(1). https://doi.org/10.1186/s40814-023-01270-w
Porta, J. M., & Celaya, E. (2005). Reinforcement Learning for Agents With Many Sensors and Actuators Acting in Categorizable Environments. Journal of Artificial Intelligence Research, 23, 79–122. https://doi.org/10.1613/jair.1437
Rekker, R. (2021). The Nature and Origins of Political Polarization Over Science. Public Understanding of Science, 30(4), 352–368. https://doi.org/10.1177/0963662521989193
Rigoli, F. (2021). Masters of suspicion: A Bayesian decision model of motivated political reasoning. Journal for the Theory of Social Behaviour, 51(3), 350–370. https://doi.org/10.1111/jtsb.12274
Robertson, C. T. (2021). Trust in Congruent Sources, Absolutely: The Moderating Effects of Ideological and Epistemological Beliefs on the Relationship Between Perceived Source Congruency and News Credibility. Journalism Studies, 22(7), 896–915. https://doi.org/10.1080/1461670x.2021.1904273
Rollwage, M., Zmigrod, L., de-Wit, L., Dolan, R. J., & Fleming, S. M. (2019). What Underlies Political Polarization? A Manifesto for Computational Political Psychology. Trends in Cognitive Sciences, 23(10), 820–822. https://doi.org/10.1016/j.tics.2019.07.006
Said, N., Fischer, H., & Anders, G. (2021). Contested Science: Individuals With Higher Metacognitive Insight Into Interpretation of Evidence Are Less Likely to Polarize. Psychonomic Bulletin & Review, 29(2), 668–680. https://doi.org/10.3758/s13423-021-01993-y
Sass, J., & Dryzek, J. S. (2013). Deliberative Cultures. Political Theory, 42(1), 3–25. https://doi.org/10.1177/0090591713507933
Schulz, L., & Bhui, R. (2024). Political reinforcement learners. Trends in Cognitive Sciences, 28(3), 210–222. https://doi.org/10.1016/j.tics.2023.12.001
Shem, W. (2023). Social Media Use for Decision Making During Politics in a Multicultural Society: A Case Study of Nigeria. The Journal of Society & Media, 7(2), 281–299. https://doi.org/10.26740/jsm.v7n2.p281-299
Shen, H. (2020). Research on Connotation Structure and Promotion Path of College Students’ Ideological and Political Education Appeal in the New Period. https://doi.org/10.2991/assehr.k.200316.202
Simonsson, O., Narayanan, J., & Marks, J. (2021). Love Thy (Partisan) Neighbor: Brief Befriending Meditation Reduces Affective Polarization. Group Processes & Intergroup Relations, 25(6), 1577–1593. https://doi.org/10.1177/13684302211020108
Spälti, A. K., Brandt, M., & Zeelenberg, M. (2017). Memory Retrieval Processes Help Explain the Incumbency Advantage. Judgment and Decision Making, 12(2), 173–182. https://doi.org/10.1017/s1930297500005714
Spezio, M. L., Loesch, L., Gosselin, F., Mattes, K., & Alvarez, R. M. (2012). Thin‐Slice Decisions Do Not Need Faces to Be Predictive of Election Outcomes. Political Psychology, 33(3), 331–341. https://doi.org/10.1111/j.1467-9221.2012.00897.x
Steinbeis, N., & Crone, E. A. (2016). The Link Between Cognitive Control and Decision-Making Across Child and Adolescent Development. Current Opinion in Behavioral Sciences, 10, 28–32. https://doi.org/10.1016/j.cobeha.2016.04.009
Stewart, A. J., Plotkin, J. B., & McCarty, N. (2021). Inequality, Identity, and Partisanship: How Redistribution Can Stem the Tide of Mass Polarization. Proceedings of the National Academy of Sciences, 118(50). https://doi.org/10.1073/pnas.2102140118
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed (pp. xxii, 526). The MIT Press.
Tahir, M. J., Rehman, S., & Rehman, A. U. (2019). Effects of Electronic Media in Political Opinion Formation of Youth in Pakistan. Pakistan Journal of Social Research, 1, 1–8. https://doi.org/10.52567/pjsr.v1i01.1
Tappin, B. M., & Gadsby, S. (2019). Biased Belief in the Bayesian Brain: A Deeper Look at the Evidence. https://doi.org/10.31234/osf.io/v3r9d
Tappin, B. M., Pennycook, G., & Rand, D. G. (2020). Bayesian or Biased? Analytic Thinking and Political Belief Updating. Cognition, 204, 104375. https://doi.org/10.1016/j.cognition.2020.104375
Taufiq, A., Alvi, A., & Ittefaq, M. (2019). The Use of Social Media on Political Participation Among University Students: An Analysis of Survey Results From Rural Pakistan. Sage Open, 9(3), 215824401986448. https://doi.org/10.1177/2158244019864484
Viteková, L., & Václaviková, I. (2022). Psychological Aspects of Political Choices: Focus on Cognition, Decision-Making Styles, and Emotions in Voting Behaviour. SJPS, 25–47. https://doi.org/10.34135/sjps.220102
Vitriol, J. A., Sandor, J., Vidigal, R., & Farhart, C. E. (2022). On the Independent Roles of Cognitive &Amp; Political Sophistication: Variation Across Attitudinal Objects. Applied Cognitive Psychology, 37(2), 319–331. https://doi.org/10.1002/acp.4022
Wahidin, D. T. S., Muhyidin, A., Iswahyuni, I., & Ilmar, A. (2020). Partai Politik Dan Perilaku Pemilih Di Indonesia (Studi Pada Pemilu Legislatif 2009, 2014, Dan 2019). Journal of Government and Civil Society, 4(1), 131. https://doi.org/10.31000/jgcs.v4i1.2376
Wang, W. Y., Li, J., & He, X. (2018a). Deep Reinforcement Learning for NLP. https://doi.org/10.18653/v1/p18-5007
Wang, W. Y., Li, J., & He, X. (2018b). Deep Reinforcement Learning for NLP. https://doi.org/10.18653/v1/p18-5007
Weber, C., & Federico, C. M. (2012). Moral Foundations and Heterogeneity in Ideological Preferences. Political Psychology, 34(1), 107–126. https://doi.org/10.1111/j.1467-9221.2012.00922.x
Weeks, B. E., & Garrett, R. K. (2014). Electoral Consequences of Political Rumors: Motivated Reasoning, Candidate Rumors, and Vote Choice During the 2008 U.S. Presidential Election. International Journal of Public Opinion Research, 26(4), 401–422. https://doi.org/10.1093/ijpor/edu005
Wei, R., Lo, V., & Chang, C. (2015). Endorsements Move Students to Choose Candidate. Newspaper Research Journal, 36(4), 482–494. https://doi.org/10.1177/0739532915618418
Weinschenk, A. C., Dawes, C. T., Kandler, C., Bell, E., & Riemann, R. (2019). New Evidence on the Link Between Genes, Psychological Traits, and Political Engagement. Politics and the Life Sciences, 38(1), 1–13. https://doi.org/10.1017/pls.2019.3
Winter, K., Scholl, A., & Sassenberg, K. (2022). Flexible Minds Make More Moderate Views: Subtractive Counterfactuals Mitigate Strong Views About Immigrants’ Trustworthiness. Group Processes & Intergroup Relations, 26(6), 1310–1328. https://doi.org/10.1177/13684302221102876
Yogapriya, Dr. G., & Chettri, N. (2022). Impact of Social Media in Making Political Decisions in Developing Countries. Technoarete Transactions on Advances in Social Sciences and Humanities, 2(2). https://doi.org/10.36647/ttassh/02.02.a001
Zhang, R. J., Liu, J. H., Milojev, P., Jung, J., Wang, S., Xie, T., Choi, H., Yamaguchi, S., & Morio, H. (2018). The Structure of Trust as a Reflection of Culture and Institutional Power Structure: Evidence From Four East Asian Societies. Asian Journal of Social Psychology, 22(1), 59–73. https://doi.org/10.1111/ajsp.12350